Discrete-time signal x[n] is obtained by sampling a continuous-time signal xc(t):
x[n] = xc(nT) , -∞ < n < ∞
Fourier Transform:
xc(t) <--F--> X(jΩ)
x[n] <--F--> X(ejω)
ω = ΩT
Time Shift:
x(t-t0) <--F--> e-jΩt0 X(jΩ)
x[n-n0] <--F--> e-jωn0 X(ejω)
Frequency Shift:
ejΩ0t x(t) <--F--> X(j(Ω-Ω0))
ejω0n x[n] <--F--> X(ej(ω-ω0))
sampling period 取樣周期 T
sampling frequency 取樣頻率 fs or Ωs
With respect to different units:
Samples/second: fs = 1/T
Radians/second: Ωs = 2π/T = 2πfs
Nyquist Theorem
Nyquist Frequency ΩN
Nyquist Rate 2ΩN
aliasing 頻疊、摺疊效應
To avoid aliasing, Ωs >= 2ΩN
Foldover 反摺、混疊
- when the sampling rate is too low
Reference
Discrete-Time Signal Processing (2nd edition), A. Oppenheim & R. Schafer:
Fourier transform and inverse Fourier transform - p28
Time shift & frequency shift - Table 2.2, p59
Proof for time shift in z-transform - 3.4.2, p120
沒有留言:
張貼留言