2017/02/13

Sampling 取樣

Discrete-time signal x[n] is obtained by sampling a continuous-time signal xc(t):
x[n] = xc(nT) ,   -∞ < n < ∞

Fourier Transform:

xc(t) <--F--> X(jΩ)
x[n] <--F--> X(e)

ω = ΩT

Time Shift:
x(t-t0) <--F--> e-jΩt0 X(jΩ)
x[n-n0] <--F--> e-jωn0 X(e)

Frequency Shift:
e0x(t) <--F--> X(j(Ω-Ω0))
e0x[n] <--F--> X(ej(ω-ω0))

sampling period 取樣周期 T

sampling frequency 取樣頻率 fs or Ωs
With respect to different units:
Samples/second: fs = 1/T
Radians/second: Ωs = 2π/T = 2πfs

Nyquist Theorem
Nyquist Frequency ΩN
Nyquist Rate 2ΩN

aliasing 頻疊、摺疊效應

To avoid aliasing, Ωs >= 2ΩN

Foldover 反摺、混疊
- when the sampling rate is too low

Reference

Discrete-Time Signal Processing (2nd edition), A. Oppenheim & R. Schafer:
Fourier transform and inverse Fourier transform - p28
Time shift & frequency shift - Table 2.2, p59
Proof for time shift in z-transform - 3.4.2, p120

沒有留言:

張貼留言