Discrete-time signal x[n] is obtained by sampling a continuous-time signal xc(t):
x[n] = xc(nT) , -∞ < n < ∞
Fourier Transform:
xc(t) <--F--> X(jΩ)
x[n] <--F--> X(ejω)
ω = ΩT
Time Shift:
x(t-t0) <--F--> e-jΩt0 X(jΩ)
x[n-n0] <--F--> e-jωn0 X(ejω)
Frequency Shift:
ejΩ0t x(t) <--F--> X(j(Ω-Ω0))
ejω0n x[n] <--F--> X(ej(ω-ω0))
sampling period 取樣周期 T
sampling frequency 取樣頻率 fs or Ωs
With respect to different units:
Samples/second: fs = 1/T
Radians/second: Ωs = 2π/T = 2πfs
Nyquist Theorem
Nyquist Frequency ΩN
Nyquist Rate 2ΩN
aliasing 頻疊、摺疊效應
To avoid aliasing, Ωs >= 2ΩN
Foldover 反摺、混疊
- when the sampling rate is too low
Reference
Discrete-Time Signal Processing (2nd edition), A. Oppenheim & R. Schafer:
Fourier transform and inverse Fourier transform - p28
Time shift & frequency shift - Table 2.2, p59
Proof for time shift in z-transform - 3.4.2, p120
Information about Electrical, Electronic, Communication and Computer Engineering 電機、電子、通訊、電腦資訊工程的學習筆記
相關資訊~生醫工程:StudyBME
聽力科技相關資訊:電子耳資訊小站
iOS程式語言:Study Swift
樹莓派和Python:Study Raspberry Pi
2017/02/13
2017/02/12
Partial Fraction 部分分式
Partial fraction decomposition may be required for dealing with z-transform.
partial fraction decomposition 部分分式分解
partial fraction expansion 部分分式展開
Solution:
Let X/( 1 )( 2 ) = A/( 1 ) + B/( 2 )
Multiply ( 1 ) and ( 2 ) at both sides and get
X = A ( 2 ) + B ( 1 )
Let ( 1 ) = 0 to get A:
A = X / ( 2 ) | ( 1 ) = 0
Let ( 2 ) = 0 to get B:
B = X / ( 1 ) | ( 2 ) = 0
partial fraction decomposition 部分分式分解
partial fraction expansion 部分分式展開
Solution:
Let X/( 1 )( 2 ) = A/( 1 ) + B/( 2 )
Multiply ( 1 ) and ( 2 ) at both sides and get
X = A ( 2 ) + B ( 1 )
Let ( 1 ) = 0 to get A:
A = X / ( 2 ) | ( 1 ) = 0
Let ( 2 ) = 0 to get B:
B = X / ( 1 ) | ( 2 ) = 0
2017/02/09
Base and Exponent 底數與指數
For xn
中文讀法:x的n次方
英文讀法:x to the power of n
where
x:
base 底數
n:
index/exponent 指數
power 次方
中文讀法:x的n次方
英文讀法:x to the power of n
where
x:
base 底數
n:
index/exponent 指數
power 次方
2017/02/08
Linear, Time-Invariant, Causality, Stability 線性、非時變、因果性、穩定性
linear system 線性系統
time-invariant system 非時變系統
causality 因果性
stability 穩定性
For stability,
bounded-input bounded-output (BIBO) 有界輸入有界輸出
unit circle 單位圓
region of convergence 收斂域
When the ROC of z-transform X(z) includes the unit circle, x[n] is:
stable 穩定
absolutely summable 絕對可加
time-invariant system 非時變系統
causality 因果性
stability 穩定性
For stability,
bounded-input bounded-output (BIBO) 有界輸入有界輸出
unit circle 單位圓
region of convergence 收斂域
When the ROC of z-transform X(z) includes the unit circle, x[n] is:
stable 穩定
absolutely summable 絕對可加
2017/02/07
Eigendecomposition, Eigenvalue, Eigenvector, Eigenfunction 特徵分解、特徵值、特徵向量、特徵函數/固有值、固有向量、固有函數
Eigendecomposition 特徵分解
Spectral decomposition 譜分解
scalar 純量
vector 向量
For n×n matrix A,
if Ax = λx
where
λ is a scalar.
x is a non-zero vector with dimension N.
Then
Av = λv
Eigenvalue 特徵值/固有值 λ
Eigenvector 特徵向量/固有向量 v
Af = λf
Eigenfunction 特徵函數/固有函數 f
For an LTI system, an input signal x[n] which is an eigenfunction of the system such as x[n] = ejωn appears at the output of the system with the eigenvalue H(ejω).
Spectral decomposition 譜分解
scalar 純量
vector 向量
For n×n matrix A,
if Ax = λx
where
λ is a scalar.
x is a non-zero vector with dimension N.
Then
Av = λv
Eigenvalue 特徵值/固有值 λ
Eigenvector 特徵向量/固有向量 v
Af = λf
Eigenfunction 特徵函數/固有函數 f
For an LTI system, an input signal x[n] which is an eigenfunction of the system such as x[n] = ejωn appears at the output of the system with the eigenvalue H(ejω).
訂閱:
文章 (Atom)