complex number 複數
complex plane 複數平面
real part 實部
imaginary part 虛部
z = a + bi
Re(z) = a
Im(z) = b
i2 = -1
-i = 1/i proof: -i = -i × i/i = -i2/i =-(-1)/i = 1/i
∠z = tan-1(Im(z)/Re(z)) = tan-1(Ib/a)
z = r∠θ
r is modulus 模數 / magnitude 量值/大小
θ is argument 幅角/引數 / phase 相位/相角
r = |z|
argument 幅角
phase 相位/相角
in-phase 同相位
out-of-phase 不同相位
For Acos(ax + b), phase is b. and amplitude is A.
radian 徑度/弧度
phasor 相量
ejx = cosx + isinx = cisx (Euler's formula)
complex conjugate 共軛複數
if z = a + bi,
the complex conjugate of z is
z_bar or z* = a - bi
Re(z*) = Re(z) = a
Im(z*) = -Im(z) = -b
To get z*, simply flip z around x-axis.
|z| = | a + bi | = √(a2 + b2)
|z|2 = |a + bi|2 = a2 + b2 = (a + bi )(a - bi ) = (z)(z*)
Matlab: conj()
>> z = 1 + 2i
z =
1.0000 + 2.0000i
>> z_conj = conj(z)
z_conj =
1.0000 - 2.0000i
conjugate transpose 共軛轉置
相關資料
Euler's formula
沒有留言:
張貼留言