Nonsingular
If determinant ≠ 0 => i.e. the inverse matrix exists.
=> the matrix is invertible/non-singular.
invertible matrix 可逆矩陣
nonsingular matrix 非奇異矩陣/非特異矩陣
nondegenerate matrix 非退化矩陣
AB = BA = I
B = A-1 = adj(A)/det(A)
where
adj(A) = adjoint matrix 伴隨矩陣 of A
det(A) = determinant 行列式 of A
>> a = [1 1 ; 2 1]
a =
1 1
2 1
>> det(a)
ans =
-1
>> b = inv(a)
b =
-1 1
2 -1
>> a*b
ans =
1 0
0 1
>> b*a
ans =
1 0
0 1
Singular
If determinant = 0 => the matrix is invertible.
non-invertible matrix 不可逆矩陣
singular matrix 奇異矩陣/特異矩陣degenerate matrix 退化矩陣
>> a = [2 3;1 1.5]
a =
2.0000 3.0000
1.0000 1.5000
>> det(a)
ans =
0
>> b = inv(a)
Warning: Matrix is singular to working precision.
b =
Inf Inf
Inf Inf
>>
Example:
References
奇異矩陣 singular matrix (國家教育研究院雙語詞彙、學術名詞暨辭書資訊網)
Invertible matrix (Wikipedia)